36 research outputs found

    A simplification of rigorous atmospheric raytracing based on judicious rectilinear paths for near-surface GNSS reflectometry

    Get PDF
    Atmospheric delays are known to cause biases in Global Navigation Satellite System Reflectometry (GNSS-R) altimetry applications, such as for sea-level monitoring. The main quantity of interest is the reflection-minus-direct or interferometric atmospheric delay. Recently, we have presented a rigorous raytracing procedure to account for linear and angular refraction in conjunction with reflection as observed from near-surface platforms. Here, we demonstrate the feasibility of simplifying the ray trajectory by imposing a rectilinear wave propagation model. Two variants were assessed, based on the apparent or refracted satellite direction on the one hand and the geometric or vacuum conditions on the other hand. The former was shown to agree with rigorous results in terms of interferometric radio length while the latter agreed in terms of the interferometric vacuum distance. Upon a judicious combination of the best aspects of the two rectilinear cases, we have defined a mixed variant with excellent agreement with rigorous raytracing in terms of interferometric atmospheric delay. We further showed that mapping functions developed for GNSS positioning cannot be reused for GNSS-R purposes without adaptations. Otherwise, the total atmospheric delay may be underestimated by up to 50% at low elevation angles. The present work facilitates the adaptation of existing atmospheric raytracing software for GNSS-R purposes

    Estimativa da umidade do solo por refletometria GNSS : uma revisão conceitual

    Get PDF
    Soil moisture monitoring enables efficient management and use of water resources, having great importance for several purposes, such as: monitoring of risk areas; delimitation of areas susceptible to flooding; geotechnical activities; and in agriculture development. GNSS Reflectometry (GNSS-R) is a scientific and technological development that allows one to perform proximal or remote sensing, depending on the antenna height concerning the surface, by means of navigation satellites. This method exploits GNSS signals indirectly reaching a receiver antenna after they are reflected on the surrounding surfaces. In this method, direct and indirect GNSS signals that reach the receiving antenna are exploited, after reflection on the surfaces existing around the antenna. The combination of these two signals causes the multipath effect, which affects GNSS observable and deteriorates positioning. On the other hand, when interacting with these reflecting surfaces one can estimate their properties. One of the main advantages of GNSS-R, when compared with the conventional methods, is the intermediate coverage area, as well as, the use of the well-defined structure of GNSS systems that guarantee appropriate temporal resolution. The scope of this paper is to present a conceptual review of GNSS-R applied to soil moisture monitoring.O monitoramento da umidade do solo possibilita o manejo e uso eficiente de recursos hídricos, sendo uma atividade importante em diversas áreas, tais como: no monitoramento de áreas de risco; delimitação de áreas suscetíveis a enchentes; atividades da geotecnia; e na agricultura. A Refletometria GNSS (GNSS-R) é um desenvolvimento científico e tecnológico que permite realizar sensoriamento remoto ou proximal, a depender da altura da antena em relação à superfície, com satélites de navegação. Neste método, explora-se os sinais GNSS que chegam à antena receptora de maneira direta e indireta, após reflexão nas superfícies existentes no entorno da antena. A combinação destes dois sinais ocasiona o efeito de multicaminho, que afeta as observáveis GNSS e deteriora o posicionamento. Por outro lado, ao interagir com estas superfícies, o sinal indireto permite estimar atributos acerca destas superfícies, como por exemplo a umidade do solo. Uma das principais vantagens em relação aos métodos convencionais reside no fato do GNSS-R proporcionar uma área de abrangência intermediária e o uso da estrutura bem estabelecida dos satélites GNSS, que garantem resolução temporal apropriada. O escopo deste trabalho é apresentar uma revisão conceitual acerca do GNSS-R aplicado no monitoramento da umidade do solo

    An open‑source low‑cost sensor for SNR‑based GNSS reflectometry : design and long‑term validation towards sea‑level altimetry

    Get PDF
    Monitoring sea level is critical due to climate change observed over the years. Global Navigation Satellite System Reflectometry (GNSS-R) has been widely demonstrated for coastal sea-level monitoring. The use of signal-to-noise ratio (SNR) observations from ground-based stations has been especially productive for altimetry applications. SNR records an interference pattern whose oscillation frequency allows retrieving the unknown reflector height. Here we report the development and validation of a complete hardware and software system for SNR-based GNSS-R. We make it available as open source based on the Arduino platform. It costs about US$200 (including solar power supply) and requires minimal assembly of commercial off-the-shelf components. As an initial validation towards applications in coastal regions, we have evaluated the system over approximately 1 year by the Guaíba Lake in Brazil. We have compared water-level altimetry retrievals with independent measurements from a co-located radar tide gauge (within 10 m). The GNSS-R device ran practically uninterruptedly, while the reference radar gauge suffered two malfunctioning periods, resulting in gaps lasting for 44 and 38 days. The stability of GNSS-R altimetry results enabled the detection of miscalibration steps (10 cm and 15 cm) inadvertently introduced in the radar gauge after it underwent maintenance. Excluding the radar gaps and its malfunctioning periods (reducing the time series duration from 317 to 147 days), we have found a correlation of 0.989 and RMSE of 2.9 cm in daily means. To foster open science and lower the barriers for entry in SNR-based GNSS-R research and applications, we make a complete bill of materials and build tutorials freely available on the Internet so that interested researchers can replicate the system

    50 anos de sinergia entre geodésia espacial e meteorologia: do erro no posicionamento GNSS a aplicações de previsão de precipitação de curtíssimo prazo

    Get PDF
    The neutral atmosphere (or troposphere) causes refraction in radio frequency signals, which results in errors in Global Navigation Satellite Systems (GNSS) measurements. In meteorology, this effect can represent important measurements of the concentration of atmospheric constituents, especially in regions where conventional high-altitude atmospheric sounding (radiosondes) cannot be performed. There are two GNSS techniques used for this. In the first one, GNSS receivers are located on terrestrial stations that provide estimates of the vertically integrated moisture content (Precipitable Water Vapor - PWV). In the second case, receivers are in space platforms, which obtains profiles of atmospheric pressure, temperature and humidity, known as GNSS radio occultation. These measurements have significant potential for nowcasting applications (30 minutes in advance) of extreme precipitation events (>35 mm). This paper presents a review of the state of the art in the synergy between Geodesy and Meteorology for modeling the neutral atmosphere (neutrosphere), its effect on GNSS positioning and in the estimation of atmospheric constituents, and their applications. Furthermore, it offers the improvements and new challenges developed in modeling the delay for high accuracy positioning.A atmosfera neutra (ou troposfera) causa refração nos sinais de radiofrequência, que resulta em erros nas medidas do Global Navigation Satellite Systems (GNSS) empregadas no posicionamento geodésico. Já para a Meteorologia esse efeito pode representar medidas importantes da concentração dos constituintes atmosféricos, principalmente em regiões onde não se pode realizar sondagem atmosférica convencional, por meio de radiossondas acopladas a balões. Duas técnicas GNSS podem ser empregadas para isso. A primeira utiliza receptores em estações terrestres que fornecem estimativas do conteúdo integrado verticalmente de umidade na atmosfera neutra (Precipitable Water Vapor - PWV). A segunda, com receptores localizados em plataformas espaciais, com os quais obtém perfis atmosféricos de pressão, temperatura e umidade, na técnica conhecida como Rádio-ocultação GNSS. Essas medidas têm um potencial significativo para aplicações em previsões de curtíssimo prazo (30 minutos) de eventos extremos de precipitação (>35 mm). O objetivo principal deste artigo é realizar uma revisão do estado da arte da sinergia entre a Geodésia e a Meteorologia na modelagem da atmosfera neutra (neutrosfera), seu efeito no posicionamento GNSS e na estimativa dos constituintes atmosféricos e suas aplicações. Além disso, apresenta os aprimoramentos e novos desafios desenvolvidos na modelagem do atraso para o posicionamento de alta acurácia
    corecore